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Conclusion
•	good for visualizing crossmodal translations in the initial 

domain
•	could potentially provide better multimodal fusion than 

multimodal autoencoding methods
•	currently very limited and expensive to train

  

Downsides
•	very limited image size

•	50 x 50 pixels
•	with images of size 224 x 224 pixels, BiDNN achieves  

80% in P10
•	slow training

•	~20 hours on a GPU compared to a few hours on a 
CPU for BiDNN

Evaluation

•	MediaEval 2014, formed post evaluation 
•	10,321 video segments that contain both keyframes 

and automatic speech transcripts
•	automatic speech transcripts

•	averaged Word2Vec
•	keyframe representing video segment

•	image of 64 x 64 pixels (directly given to GAN)
•	VGG-19 features of such image for AEs / BiDNNs

Dataset

Crossmodal Visualizations
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•	 text to image GAN-CLS1 multimodal fusion

•	generative network
•	performs a text to image crossmodal translation
•	used to generate visualizations
•	provides an infinite amount of artificial samples

•	discriminative network
•	used to perform multimodal fusion
•	obtained embedding used for multimodal retrieval
•	improves the generative network

Idea

Existing Approaches
Classical Multimodal Autoencoders:

•	separate branches for each modality
•	reconstructing both modalities with added noise and spo-

radic zeroing of one modality

Bidirectional Deep Neural Networks (BiDNN):
•	crossmodal translations (with added restrictions) as a 

mean of performing multimodal fusion
•	best performing method at TRECVID 2016
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•	given a video segment (anchor), suggest a set of relevant 
video segments (targets) 

Goal:
•	use two modalities (automatic speech transcripts and vid-

eo keyframes) to find relevant video segments
•	visualize learned crossmodal relationships (e.g. what 

does the model expect to be visible in the video segment 
given a particular speech transcript segment)

Means:
•	perform multimodal fusion of the given input modalities
•	synthesize images for a given speech transcript and find 

top words for a given image

Problem

Generative Adversarial Networks for Multimodal 
Representation Learning in Video Hyperlinking
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