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Marko Ševrović, Hrvoje Gold
Faculty of Transport and Traffic Sciences
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Abstract—This paper presents a pilot study towards estimat-
ing complex traffic flow parameters in airborne video. The
study presents two prototype software systems attempting
to solve intermediate tasks in recovering microscopic OD
(origin-destination) matrices at complex road intersections.
The first system employs background modelling in order
to estimate the OD matrix of an intersection imaged by
a fixed camera. The second system explores the feasibility
of applying such approach to input video acquired from a
hovering aircraft by pre-warping the whole video towards
the coordinates of the first frame. The experimental part
presents performance evaluation of the two prototype sys-
tems on real traffic videos acquired from a tall building and
a non-rigid airship. The paper is concluded by discussing
the achieved baseline performance and proposing suitable
directions for future research.

I. INTRODUCTION

Modern transportation systems are designed by opti-
mizing traffic flow models which are parameterized by
actual demands estimated from empirical measurements.
Typical traffic flow parameters include frequency, den-
sity, headway, etc. of the vehicles at relevant sections
of the transportation network. There are many suitable
commercial technologies for estimating these parameters
at straight sections of the network. However, none of them
provides satisfactory performance at intersections where
one needs to establish temporal correspondence between
the detected vehicles in order to estimate microscopic OD
(origin-destination) matrices [1], [2]. The most general ap-
proach for estimating intersection parameters corresponds
to manual vehicle counting. However, that approach is
hampered by organizational and financial difficulties,
since measuring complex intersections usually requires
many trained human operators. Encouraging results have
been achieved by computer vision based approaches [3],
[4] in video acquired from viaducts or telescopic cranes,
but this is not applicable at many intersections. Airplane
imagery [5] has a broader scope but is often infeasible due
to the high costs involved. Acquisition from a helicopter
[6] is more accessible, but the costs are still significant.
Additionally, if affordable standard resolution cameras are
employed, one has to address the problem of small-sized
vehicles in images which makes it difficult to count them
automatically.

This paper presents introductory research towards esti-
mating intersection parameters in video acquired from an
unmanned aerial vehicle (UAV) hovering at the heights
of about 50 m. The main commercial advantages of
such approach include lower acquisition costs and better
performance with standard resolution images. In partic-
ular, the paper evaluates performance of the following
two intermediate tasks. In the first task we assess the

accuracy of OD matrices estimated in video acquired by
a fixed camera from a tall building, based on a straight
forward background modelling technique. The second
task involves stabilizing video from a hovering airship, in
the ambition to extend the applicability of fixed-camera
approaches to UAV-based applications.

In the rest of the paper, we first present a short review of
the related work in Section II. Subsequently, in Section
III we explain the broad significance of airborne video
for estimating parameters of a transportation system.
We detail the theoretical backgrounds for the considered
intermediate tasks in Sections IV and V. Subsequently
we present experimental results obtained on videos of
real intersections acquired from a tall building and a
hovering airship in VI. Finally, in Section VII we present
conclusions and directions for future work.

II. RELATED WORK

Extraction of complex intersection features such as
OD matrices and headway from airborne imagery has
many advantages over ground-based approaches [5], [6],
however the involved costs have been very high. Recent
development of low-cost UAV technology encourages
new research on airborne traffic flow feature collection
[4].

A large body of previous work addresses videos ac-
quired with fixed cameras. These approaches have been
mostly based on image motion detection [7] and back-
ground modelling [3], [8]. In both cases, the transition
towards a moving airborne camera [6], [9] is not straight-
forward and requires further research. More versatile ap-
proaches build on generic object detection [10], however
most of them address images in which the street scene
is viewed from an orthogonal direction. This would not
be the case in images acquired from low-height howering
UAVs where we observe both appearance variety (due to
different relative poses of the object with respect to the
camera), and the variety of object categories (cars, trams,
buses, pedestrians, cyclists, etc). This variability would
have to be addressed by a multi-class detection approach
based on feature sharing such as [11], however the per-
formance of such approaches still appears insufficient for
our purpose.

Stabilization of the acquired video is an important issue
in airborne surveillance. Camera orientation can often
be stabilized within some limits by suitable gyroscope
platforms. Medium to high frequency vibrations generated
from UAV’s motors and wind can also be problematic and
can be addressed by suitable absorbing materials. Unfor-
tunately, many of the UAVs considered suitable for traffic
surveillance have significant payload weight limitations,



which greatly reduce the possibility of utilising hardware
stabilization setups. This accentuates the importance of
software based stabilization [6], such as the approach
presented in V and VI-C.

An additional concern specific to UAV operation is
automatic control. Autonomous UAV capabilities would
be interesting in order to i) relax the human operator
involvement, ii) ensure optimal acquisition in bad weather
through UAV stabilization, and iii) minimize the risks of
damage during take-off and landing. A recent study [12]
confirmed the potential of visual control, even when so-
phisticated alternatives are present such as inertial sensors
and GNSS (GPS, Galileo).

III. MEASURING TRAFFIC FLOW PARAMETERS AT THE
MICROSCOPIC SCALE

The most critical part of every transport system are its
nodes or intersections. Design, throughput and capacity
of a single intersection can affect even very distant parts
of the transport network. Therefore studies leading to
appropriate intersection design and traffic control are the
most important factors in transport network optimisation.
An important category of these studies is performed at
the microscopic scale, where traffic flow parameters are
measured by considering each vehicle as an individual. In
this paper we are especially interested in measuring OD
matrices and time headway at complex intersections.

OD matrix is also know as a trip table. It contains the
number of vehicles going from each intersection entry to
each intersection exit during the considered time interval.
OD matrices are especially hard to recover at complex
intersections and interrelated junctions where compre-
hending and accurately counting the entries is highly
impractical and expensive both for human operators and
commercial sensor technologies.

Time headway [13] corresponds to the elapsed time
between the front of the first vehicle passing a road
cross-section and the front of the subsequent vehicle.
Headway is the most essential microscopic traffic flow pa-
rameter. Interaction between headway and vehicle speed
is responsible for the overall traffic flow performance.
Precise measurements of headway in relation to speed
provide a detailed insight in the capacity limitations
and design flaws at observed intersections. Unfortunately,
most existing studies focus on average headway within
a limited period of time, mostly due to imperfections
of various sensors used for vehicle counting and traffic
parameter measurement. Headway-to-speed ratio is par-
ticularly difficult to recover at intersections since it is
not constant during intersection passing [14]. Therefore,
there is a strong need for future sensor technologies which
would be able to map this parameter over the intersection
area.

IV. VEHICLE DETECTION BY FIXED CAMERAS

When viewing a rigid scene from a fixed viewpoint,
each pixel is always projected from the same part of the
scene. By analyzing the changes of a pixel in time, a
model can be constructed to determine whether a current
realization of that pixel is more likely to belong to a
moving foreground object or to the background scenery

[8]. An object detection system based on such model
would need to include the following processing steps.
• Creation of a per-pixel background model for the

desired scene.
• Comparing the current video frame against the back-

ground model to identify foreground pixels.
• Grouping the foreground pixels into high-level ob-

jects.
The background model is often built and updated

concurrently with the object detection process. The main
advantage of such approach is the ability to make an
adaptive model which would be able to tollerate small
changes due to different time of day. However, we do
not need that feature, since the traffic parameters are
estimated in limited time intervals (less than one hour),
usually at the time of peak traffic. Therefore we build the
background model in an off-line fashion, by employing all
available frames of the input video. The object detection
is consequently performed on the same video, after having
rewound it back to the start, as described in Figure 1.

read video
frame

gaussian
blur

update
background model

create 
foreground image

morphological
opening

drop smaller objects
mark remaning objects

read video
frame

gaussian
blur

first pass: recovering
the background model

second pass: object detection
by using the background model

initialize
background model
with the first
video frame

Fig. 1. Flow chart of the proposed procedure

The first step in both processing phases is to apply
Gaussian filtering to the current frame. Doing so greatly
reduces the noise and the undesired effects of minute
camera vibrations. This technique therefore improves both
the accuracy of the background model and the reliability
of foreground object detection.

A background model of an intersection tries to mimic
how an image of the intersection would look like without
any moving objects (vehicles, pedestrians, etc.) on it.
Two different approaches were considered for creating a
background model of the intersection. The first approach
was to calculate the moving average for each pixel on
the picture. Due to the fact that vehicles often differ
in color and keep a safety distance from other vehicles
the average of each pixel converges to the color of
the underlying intersection in that position. The second
approach was to keep a histogram for each pixel and
choose the most frequent color for the background model.
An another option for creating a background model would



be based on Mixtures of Gaussians [15], however prelim-
inary results did not show dramatic improvement over
unimodal approaches and so we preferred to invest our
time elsewhere.

After the background model converges, the current
frame is compared against it in order to form a binary
(1 bit black and white) image showing whether a pixel
differs from the background or not. A white pixel indi-
cates that the corresponding pixel from the current frame
differs significantly from the background model. A black
pixel indicates that the current value is very similar or
identical to the background model. Vehicles are detected
by growing a region around each unvisited white pixel.
Coordinates of each pixel of the current region are stored
in a vector. When there are no more unvisited white pixel
neighbors, vertical and horizontal extremes are found in
the vector and a rectangle is drawn so that it encloses the
detected group.

Sometimes a vehicle has parts that do not differ signif-
icantly from the background. The most common case is
the gray reflection of the sky on the windshield that can
be very similar to the gray background of the asphalt. This
can cause a single vehicle to be detected as two separate
groups of foreground pixels. To address this problem,
morphological opening [16] is applied to the binary
image, by successively applying dilation and erosion.
Dilation widens the groups of white pixels causing their
melting with neighbouring groups. By applying erosion
the groups regain their initial size, but remain connected
to their neigbours. In the last step, objects greater than a
specific size are detected as vehicles while smaller objects
are ignored since they’re likely due to pedestrians or
noise.

V. STABILIZATION OF VIDEO ACQUIRED FROM
HOVERING AIRCRAFT

In the case of acquisition from hovering aircraft, the ac-
quired video is often unsuitable for background modelling
due to 6 DOF motion of the attached camera. We wish to
stabilize the video in a way that the image plane remains
in consistent relation with the starting video frame (or any
other reference frame).

The developed system consists of two main parts: fea-
ture tracker and homography estimator. In the first part, a
large number of features are tracked throughout the video
sequence from the reference frame to the current frame,
by using Kanade-Lucas-Tomasi (KLT) feature tracking
algorithm. The KLT tracker selects only those features
that can be reliably tracked [17].

Before estimating the transformation between the ref-
erence frame and the current frame, it is neccessary to
remove features whose movement deviates from other fea-
tures, i.e. outliers. In our case, most of outlying features
are projected from moving vehicles, which deviate from
the desired transformation of the ground plane in two
images. The removal of outliers is done by a Random
Sample Consensus (RANSAC) algorithm [18].

Coordinates of every tracked feature are then used
to estimate the desired transformation. We assume that
aircraft is high above the ground so that the transformation
can be fairly well-approximated by a homography. To

estimate homography, we need to solve equation of the
form:

A2n×9 ·

H>1H>2
H>3

 = 02n . (1)

Every corresponding pair of coordinates participates with
two linearly independent equations to the overconstrained
linear system (1). Each independent equation contributes
one row of the matrix A2n×9, where n is the number
of such corresponding pairs. Matrix H3×3 is a solution
which we are searching for, and it contains the coefficients
of the desired homography (note: Hi is i-th row of matrix
H). In our system, the linear system (1) is estimated by
SVD matrix decomposition. Since this estimation does not
maximize likelihood, the solution is additionally improved
by using gradient optimization – Levenberg-Marquardt
algorithm.

The estimated transformation is applied to current video
frame as follows:[

x′ y′ 1
]>

= H3×3 ·
[
x y 1

]>
. (2)

In the above equation, (x, y) is point in current frame,
(x′, y′) is (x, y) put into the reference image plane and
H3×3 is a homography matrix. An example of video
stabilization is shown in Figure 2.

Fig. 2. Stabilization of video acquired from hovering aircraft. The
figure shows the current frame (top), the reference frame (middle), and
the transformed current frame (bottom). Points Ti in the current frame
are transformed to the points T ′

i by the homography between the current
frame and the reference frame.

During the tracking of point features through image
sequence, error is accumulated. To improve results, as



a final step we check consistency of features. For each
feature, the similarity between the intensity of tracking
window in current frame and the intensity of tracking
window in reference frame is calculated. If the two track-
ing windows are not similar, the feature is inconsistent
and can be rejected as a bad feature.

VI. EXPERIMENTAL RESULTS

A. Vehicle detection based on background modelling

Gaussian filtering was performed by convolving an
image with a Gaussian filter kernel. A good qual-
ity/performance ratio was obtained by applying a 7×7
Gaussian kernel with a standard deviation σ=3.5. Due to
its symmetry the Gaussian kernel can be applied sepa-
rately to each dimension. Separating the filtering process
in vertical and horizontal directions and using OpenMP
for parallelization resulted in a faster implementation of
the filtering algorithm.

Creating the background model by computing a moving
average uses less memory but requires more time to
converge. Histogram-based background models converge
faster but, on the downside, require considerable memory
for storing histograms in each image pixel. In order to
save space, our approach stores only marginal RGB his-
tograms (we assume unimodal distributions) and therefore
requires a total of 3×256×width×height bytes for an 8
bit RGB image. Besides the differences in memory usage
and convergence speed no other relevant performance
differences were noticed between these two approaches.
Both approaches can be precomputed or used in real
time. We chose the precomputed approach in order to
i) avoid having to wait for model convergence, and ii)
being able to focus on object detection instead of on back-
ground modeling. The main drawback of precomputed
background models is their inability to adapt to changes,
however this is not a problem in our context since traffic
analyses are typically carried out in limited time intervals.
The foreground image is determined by comparing the
current image to the previously recovered background
model. For simplicity, the comparison is implemented
by comparing absolute RGB differences with a fixed
threshold. In all experiments the threshold was set to 20.

Before further processing, the binary foreground im-
age is subjected to morphological opening implemented
as three dilations followed by three erosions, by using
the structuring element 1×1. This procedure sometimes
causes neighbouring vehicles to be detected as one. How-
ever, empirical analysis has shown that these losses are
outweighed by the gains from having fewer fragmented
objects. The obtained results have been illustrated in
Figure 3.

Experimental evaluation revealed two major problems.
The biggest problem is the tram entrance to the scene
during which our system detects a large object which
predates all vehicles moving near the tram. Therefore,
all experimental results which we show here have been
obtained in parts of the video in which trams are not
present at the intersection. The most common problem
is detecting multiple neighbouring vehicles as only one
object. Additionally, some vehicles are detected as two
objecs. This may occur either when a car is similar to the

(a)

(b)

(c)

(d)
Fig. 3. Results of object detection: background model (a), successful
detection of multiple objects (b), two vehicles detected as one (c),
problems with big vehicles (d).

background or due to the reflections of the gray sky on
the windshield.

B. Estimating the intersection OD matrix

The developed prototype system allows the user to
define regions that represent origins and destinations in
the intersection and to count the number of objects that
pass from each origin to each destination. The OD matrix
is displayed as an overlay in the video and saved to a file



for further analysis.
Figure 4 shows the intersection with marked origins

(green) and destinations (blue). All objects detected out-
side of the red polygon are discarded. This had to be
done due to reflections on the building windows and due
to groups of pedestrians which may be large enough to
be detected as vehicles.

Fig. 4. The regions employed in the process of estimating the OD
matrix are defined manually as green (source) and blue (destination)
rectangles. The employed background model is shown in the back-
ground. A demonstration video can be viewed at http://www.zemris.
fer.hr/~ssegvic/pubs/braut12ok.avi.

The recovered OD matrices have been evaluated with
respect to the groundtruth. In the evaluation we have omit-
ted frames in which the tramways are passing through the
intersection. The obtained results have been summarized
in Table I. The table entries show the number of estimated
vehicles compared to the groundtruth.

TABLE I
THE ESTIMATED OD MATRIX COMPARED TO THE GROUNDTRUTH.

destinations
origins 0 1 2 3

0 0:0 9:9 15:17 42:44
1 14:14 0:0 8:8 24:17
2 22:27 20:23 1:1 0:0
3 28:30 32:32 26:24 3:3

C. Video stabilization

The developed prototype for video stabilization uses
the library for KLT feature tracking1, and the OpenCV
library “Camera Calibration and 3d Reconstruction” [19]
for homography estimation. The system tracks 3000 fea-
tures in windows of 7 × 7 pixels. Large number of
features and large tracking window improve stabilization
but negatively affect the processing speed. The original
video resolution is 1920 × 1080, however it has been
downsampled to 960 × 540 in order to make the com-
putation more tractable. Typically the system succeeds
to maintain a fair correspondence with the reference
frame for a few seconds. After that the results deteriorate
due to the excessive number of lost features. Demon-
stration videos can be viewed at http://www.zemris.fer.
hr/~ssegvic/pubs/culjak12original.mp4 and http://www.
zemris.fer.hr/~ssegvic/pubs/culjak12stable.mp4.

The quality of results can be expressed as an average
displacement of transformed image pixels in relation to

1URL http://www.ces.clemson.edu/~stb/klt/

corresponding pixels in the reference image, i.e. jitter. To
calculate jitter, five suitable control points are manually
chosen in the reference image. These control points
are consequently located in 13 transformed images. The
average displacement in each image is calculated as an
average difference of control point coordinates between
reference image and transformed images:

x̄ =


k∑

j=1

n∑
i=1

|xci − xi,j |
nk

 , (3)

ȳ =


k∑

j=1

n∑
i=1

|yci − yi,j |
nk

 . (4)

In the above equation k = 13, n = 5, x̄ and ȳ are
average displacements on abscissa and ordinate, (xci, yci)
are coordinates of i-th control point in the reference image
and (xi,j , yi,j) are coordinates of i-th control point in
the j-th transformed image. The results of evaluation are
shown in Figure 5.
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Fig. 5. Average displacement of the current image with respect to the
reference image, as a function the frame distance.

VII. CONCLUSION AND FUTURE WORK

This paper considered the feasibility of estimating
microscopic OD (origin-destination) matrices at complex
road intersections in airborne video. Encouraging results
have been obtained even with straight-forward computer
vision techniques. The main problems identified by per-
formance evaluation in the fixed-camera context include
aggregated detections of nearby vehicles and occlusion
by large vehicles such as tramways. The main problem
identified in the hovering-camera context is the starvation
of the tracked features.

The identified problems shall be addressed in our future
work. In particular, advanced object detection approaches
shall be tried out which would assign high-level objects to
foreground pixels not only by looking at their proximity,
but also by considering at their colour histograms and
their image motion. Long-term stabilization of the hover-
ing aircraft video shall be attempted by creating a map of
suitable ground plane points in a SLAM fashion. The map
shall be employed to restart the tracking of lost points



which shall enable us to maintain an accurate relation
towards the reference frame throughout the whole video.

Our future work shall also address estimating speed
and headway at all points of the vehicle trajectory. These
important parameters can not be reliably estimated by
existing sensor technologies, since their values typically
vary across the intersection. It is therefore expected that
the future developments might provide significant insight
into opportunities for improving the efficiency of our
transportation systems.
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